Intelligent skin cancer detection using enhanced particle swarm optimization
نویسندگان
چکیده
منابع مشابه
Intelligent identification and control using improved fuzzy particle swarm optimization
This paper presents a novel improved fuzzy particle swarm optimization (IFPSO) algorithm to the intelligent identification and control of a dynamic system. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the ...
متن کاملIntelligent Business Process Execution using Particle Swarm Optimization
In this chapter, the authors study a new variant of Particle Swarm Optimization (PSO) to efficiently execute business processes. The main challenge of this application for the PSO is that the function evaluations typically take a high computation time. They propose the Gap Search (GS) method in combination with the PSO to perform a better exploration in the search space and study its influence ...
متن کاملINVERSE FREQUENCY RESPONSE ANALYSIS FOR PIPELINES LEAK DETECTION USING THE PARTICLE SWARM OPTIMIZATION
Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2018
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2018.05.042